Variational Calculus in Space of Measures and Optimal Design

نویسندگان

  • Ilya Molchanov
  • Sergei Zuyev
چکیده

The paper applies abstract optimisation principles in the space of measures within the context of optimal design problems. It is shown that within this framework it is possible to treat various design criteria and constraints in a unified manner providing a “universal” variant of the Kiefer-Wolfowitz theorem and giving a full spectrum of optimality criteria for particular cases. The described steepest descent algorithm uses the true direction of the steepest descent and descends faster than the conventional sequential algorithms that involve renormalisation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Optimal Solution Concept for Fuzzy Optimal Control Problems

In this paper, we propose the new concept of optimal solution for fuzzy variational problems based on the possibility and necessity measures. Inspired by the well–known embedding theorem, we can transform the fuzzy variational problem into a bi–objective variational problem. Then the optimal solutions of fuzzy variational problem can be obtained by solving its corresponding biobjective variatio...

متن کامل

Optimization, Relaxation and Young Measures

We review the use of Young measures in analyzing relaxed and generalized formulations for typical problems of optimization including variational principles, optimal control problems, models in materials science, optimal design problems and nonlocal optimization problems.

متن کامل

Numerical solution of variational problems via Haar wavelet quasilinearization technique

In this paper, a numerical solution based on Haar wavelet quasilinearization (HWQ) is used for finding the solution of nonlinear Euler-Lagrange equations which arise from the problems in calculus of variations. Some examples of variational problems are given and outcomes compared with exact solutions to demonstrate the accuracy and efficiency of the method.

متن کامل

Variational inequalities in Hilbert spaces with measures and optimal stopping

We study the existence theory for parabolic variational inequalities in weighted L spaces with respect to excessive measures associated with a transition semigroup. We characterize the value function of optimal stopping problems for finite and infinite dimensional diffusions as a generalized solution of such a variational inequality. The weighted L setting allows us to cover some singular cases...

متن کامل

Variational inequalities in Hilbert spaces with measures and optimal stopping problems

We study the existence theory for parabolic variational inequalities in weighted L spaces with respect to excessive measures associated with a transition semigroup. We characterize the value function of optimal stopping problems for finite and infinite dimensional diffusions as a generalized solution of such a variational inequality. The weighted L setting allows us to cover some singular cases...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000